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A hybrid quantum mechanical-molecular mechanical (QM-MM) potential energy function with ab initio
and density functional capabilities has been implemented in the CHARMM program. It makes use of the
quantum mechanical program CADPAC and the CHARMM molecular mechanics energy function; a
GAMESS(US) interface to the CHARMM program was already available. To test the methodology, a series
of relatively small systems are studied and comparisons are made of full QM calculations with those from
various QM-MM partitions. Both density functional and Hartree-Fock calculations for the quantum region
are presented and, where possible, compared with results from previous AM1-MM calculations. For the
density functional based QM-MM calculations, the LDA and BLYP functionals were used. The performances
of both the density functional and Hartree-Fock based QM-MM calculations compare well with pure quantum
calculations. The link atom method was tested by performing a number of QM-MM simulations on the
complexes of metal cations with model ligands of biological interest. It was found that it gave good results
for the structures, binding energies, and charge distributions.

I. Introduction

The study of chemical reactions in condensed phases is one
of the major challenges in computational chemistry. The
difficulty arises from the need to simulate the system to a high
degree of quantitative accuracy at an affordable cost. To simulate
electronic states and charge redistribution, a quantum mechanical
treatment is required.1-3 The computational expense associated
with high level quantum mechanical calculations imposes a
severe restriction on the size of the system that can be studied.4

The emergence of hybrid quantum mechanical-molecular
mechanical (QM-MM) methods in recent years addresses this
problem. Pioneering studies of this type were made by Warshel
and Levitt5 and Singh and Kollman.6 The method entails the
division of the system of interest into a small region that is
treated quantum mechanically, with the remainder of the system
treated with computationally less expensive classical methods.
The quantum region includes all the atoms that are directly
involved in the chemical reaction being studied, and the
remainder of the system, believed to change little during the
reaction, is treated with a molecular mechanics force field.7 The
atoms in each system influence the other system through a
coupled potential that involves electrostatic and van der Waals
interactions.6,8-18

Several molecular mechanics programs have been adapted
to perform hybrid QM-MM simulations. In the majority of the
implementations the quantum region has been treated either by

empirical valence bond methods16 or with a semiempirical
method (usually AM1).19 These implementations have been
applied, for example, to study solvation,10,20 condensed phase
spectroscopy,21 conformational flexibility,22 and chemical re-
activity in solution,23 in enzymes,17,18,24,25and in DNA.26

Although semiempirical methods have the advantage of being
computationally inexpensive, they have a number of limita-
tions.27-30 The major limitations concern the accuracy and
reliability of these methods. In general, they are less accurate
than high-level ab initio methods, and since they have been
parametrized to reproduce the ground-state properties of mol-
ecules, they are often not well suited to studying chemical
reactions. A further disadvantage of the semiempirical methods
is the limited range of elements for which parameters have been
determined.

To overcome these limitations, the hybrid QM-MM potential
can employ ab initio2 or density functional methods3 in the
quantum region. Both of these methods can ensure a higher
quantitative accuracy and the density functional methods offer
a computationally less expensive procedure for including
electron correlation.4 Several groups have reported the develop-
ment of QM-MM programs that employ ab initio6,14,31 or
density functional methods.13,31,32

The present paper reports the implementation and application
of a QM-MM method for studying condensed phase systems,
with the ability to use ab initio (HF), and density functional
(DF) methods for the quantum region. The original AM1-MM
method of Field et al.8 has served as a model for the HF-MM
or DF-MM implementations. Many authors have repeated the
studies of simple ion-water complexes presented in Field et
al.8 as tests of hybrid QM-MM potentials. As a first test of
the implementation, we studied some of the same ion-water
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complexes to compare the results with the AM1-MM method
and various other HF-MM and DF-MM methods. To illustrate
the advantage of the ab initio and density functional methods
over semiempirical based QM-MM methods, and as a prepara-
tion for studying chemical reactions in enzyme systems, we have
performed additional test studies of models for biological ligands
complexed with Mg2+ and Ca2+. Since semiempirical methods
only consider the valence electrons, these ions would be
represented as point charges when treated in the quantum region
by semiempirical based QM-MM methods. An issue that arises
when performing QM-MM simulations of enzymes is the
treatment of the boundary between the QM and MM regions
that involve chemical bonds. Field et al.8 employed “link” atoms
to cap the quantum region when the QM-MM boundary lies
across a bond. To assess the use of link atoms in HF-MM and
DF-MM calculations, we have performed tests in which the
QM-MM partition is made within a single molecule.

II. Methods

Hybrid Potential. The QM-MM potential energy function
implemented here is conceptually similar to that developed by
Field et al.8 The total energy of the system is calculated by
solving the Schro¨dinger equation with an effective Hamiltonian
for the mixed quantum and classical system:

whereΨ is the electronic wave function of the quantum system.
It depends directly on the electron coordinatesr and para-
metrically on the coordinates of the quantum and classical
nuclei; they are referred to asRR andRM, respectively.

The Hamiltonian can be partitioned into quantum and classical
components8 by writing

where ĤQM is the pure quantum Hamiltonian,ĤMM is the
classical Hamiltonian andĤQM-MM is the hybrid QM-MM
Hamiltonian. Given eq 2, the total energy can be written

For hybrid QM-MM calculations using density functional
theory for the quantum region, the electronic energy terms (EDF

andEDF-MM) explicitly depend on the electron density,F(r), of
the atoms in the quantum region.3 The electron density is
determined by solving self-consistently the one-electron Kohn-
Sham equations:3,33

whereψi is a one-electron wave function andei is the associated
eigenvalue. The HamiltonianĤDF is given by

In eq 5F(r) is the electron density (F(r)∑i|ψi(r)2| where the
sum is over all occupied Kohn-Sham orbitalsi), EXC is the

exchange correlation functional,3 qM is the net charge of an MM
atom,ZR is the nuclear charge of quantum atomR, riR is the
distance between electroni and the quantum atomR, riM is the
distance between electroni and the MM atomM andRRâ is the
distance between quantum atomsR andâ, andr ′ refers to the
coordinates of a second electron. Once the eqs 4 have been
solved for the Kohn-Sham orbitalsψi, the contributions in eq
3 are evaluated from the expressions

and

whereVRM is the van der Waals interaction energy between the
quantum and classical regions and is described below. For ab
initio Hartree-Fock based QM-MM calculations (HF-MM)
the analogous equations for the electronic Hamiltonian and the
corresponding energies are1

whereHµν
core is defined as

The indicesµ and ν refer to the basis set orbitalsφ, andPµν
and Fµν are elements of the density and Fock matrices.1 The
Lennard-Jones interaction energy,VRM, is common to both types
of calculation and is given as

where the sum overR is over all QM atoms and the sum over
M is over all MM atoms. This term is essential to obtain the
correct structure since there is no Pauli repulsion between QM
and MM atoms.

The molecular mechanics energy contribution,EMM, is
calculated with the standard CHARMM potential energy func-
tions.34

Computational Details. For the purposes of performing
QM-MM calculations, interfaces were written in CHARMM34

to incorporate the quantum mechanical packages CADPAC;35

the GAMESS(US) program36 had been interfaced with
CHARMM by B. Brooks and M. Hodoscek (unpublished)18.
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Density functional calculations with CADPAC were performed
in the local density approximation (LDA) level using the Vosko,
Wilk, and Nusair parametrization37 of Monte Carlo calculations
by Ceperley and Alder38 on a series of homogeneous electron
gases. Nonlocal density functional calculations were performed
using the nonlocal exchange correction of Becke39 and the
nonlocal correlation correction of Lee, Yang, and Parr,40 as
transformed by Miehlich et al.41 (BLYP). The nonlocal correc-
tions for the BLYP calculations were included self-consistently.
Numerical integration was performed for the density functional
calculations using numerical quadrature42 with a MEDIUM sized
grid, as defined in CADPAC. For the MM atoms, standard
CHARMM22 parameters were used;43 unlike some other QM-
MM implementations,44 no optimization of the van der Waals
parameters for the interaction between QM and MM atoms was
made. For the small systems studied nonbonded cutoffs were
not employed in the calculations so that all interactions were
included. The basis set used for each calculation is given in the
appropriate table of results. The procedure for handling QM-
MM boundaries across covalent bonds is to use a link atom to
cap the quantum region.8 The implementation of this approach
is the same as that used in the semiempirical QM-MM method
of Field et al.8 except that the link atom is treated as a proper
QM atom and, as such, feels the charges from the atoms in the
MM region. The charges on the MM functional group or atom
that is “replaced” by the link atom do not contribute to the one-
electron integrals in the self-consistent calculation for the
quantum region. For CH3CH2OH with OH treated by QM and
CH3CH2 treated by MM as an example, the charges on the CH2

group are not included in the QM Hamiltonian; all other MM
charges (i.e., from the CH3 group) are included. The link atom
is initially positioned 1 Å along the original bond but is not
constrained during optimization. The other classical energy terms
included in the boundary region are the same as those described
in detail by Field et al.8

III. Results and Discussion

As a first test, several of the complexes studied by Field et
al.8 with the AM1-MM potential have been treated. They are
classified according to the total charge on the complex and
whether link atoms were required. A comparison of the results
from the previous AM1-MM studies and the HF-MM and
DF-MM results was made. Also, the relative performance of
the HF-MM and the various DF-MM calculations was
assessed. Since the ability of the method to accurately model
the interactions between a solute and solvent molecule is crucial
to future condensed phase studies, almost all of the binary
complexes include water.

The calculations were performed in the gas phase to allow
comparison with pure quantum mechanical studies and available
experimental data. For the purposes of clarity, specific results
with the DF-MM method are referred to by the functional that
was used; for example, a DF-MM calculation with the BLYP
functional is referred to as BLYP-MM. The basis sets employed
are described in the legends of the appropriate tables. All degrees
of freedom were optimized using a conjugate gradient minimi-
zation method. The calculations are not corrected for basis set
superposition error (BSSE). In the case of the cation water
complexes this is expected to be in the range of 1-2 kcal/mol
on the basis of previous studies.45 For the larger complexes that
employ link atoms, the BSSE for the QM and QM-MM
calculations are expected to be very similar. An additional issue
that arises in the comparison of QM and QM-MM results is
the different treatment of dispersion interactions in the various

methods. For the present cases the magnitude of the dispersion
energy in the MM systems is small relative to the interaction
energies, particularly for the complexes studied in the link atom
tests.

Water Dimer. The water dimer is a standard test case for
QM-MM methods.8,11,31The geometries and binding energies
for the water dimer system calculated at the various levels of
theory are presented in Table 1. Two possibilities for partitioning
the system are considered, corresponding to whether the
hydrogen bond donor is treated quantum mechanically or
classically (see Figure 1). In considering the results, one should
note that the MM water model (TIP3P45,46) includes the average
polarization expected in liquid water; i.e., the dipole moment

TABLE 1: Binding Energy, ∆E, and Structural Data for the
Water Dimera

∆E d(H‚‚‚O) d(O‚‚‚O) ∠O‚‚‚HO

Hybrid Potential Calculations

H2O(donor)b

HF-MM 7.389 1.761 2.738 178.4
LDA-MM 7.136 1.765 2.742 179.2
BLYP-MM 6.768 1.772 2.746 179.3
AM1-MM 3.300 2.150 2.944 159.5
H2O(acceptor)c

HF-MM 7.398 1.732 2.711 178.87
LDA-MM 7.139 1.736 2.715 179.37
BLYP-MM 6.749 1.746 2.723 179.52
AM1-MM 4.600 1.990 2.983 169.0

Full Quantum Calculations

HF 5.710 1.986 2.898 177.2
LDA 10.74 1.751 2.720 171.3
BLYP 6.320 1.921 2.882 174.1

Full Classical Calculation

CHARMM 7.075 1.749 2.726 176.3
experimentd 5.44( 0.7 2.98 174( 20

a The units of energy are kcal/mol; bond lenghts are in A° ngstroms
and bond angles in degrees. For the hybrid potential calculations the
TIP3P model was used for the MM region and the 6-31G* basis set
was used for the quantum region. Calculations were performed for the
hydrogen bond donor in the quantum region and repeated for the donor
in the classical region. All degrees of freedom were optimized. No
counterpoise correction was used in the QM calculations.b H2O(donor)
corresponds to system I in Figure 1 in which the donor molecule is
treated quantum mechanically.c H2O(acceptor) corresponds to system
II in Figure 1 in which the acceptor molecule is treated quantum
mechanically.c See refs 42 and 43.

Figure 1. (I) Water dimer with the hydrogen bond donor in the
quantum region. (II) Water dimer with the hydrogen bond acceptor in
the quantum region. (III) The minimum energy structure for the complex
of water with chloride. (IV) The saddle point for interconversion
between differentCs isomers of the water-chloride complex.

3464 J. Phys. Chem. A, Vol. 103, No. 18, 1999 Lyne et al.



is larger than the gas-phase value so that the interaction energies
would be expected to be overestimated.

The interaction energies from the QM-MM studies are
somewhat higher than experiment for the HF-MM and DF-
MM calculations, with the results from the QM donor system
being slightly better than the QM acceptor results. The HF-
MM and DF-MM results are closer to the experimental value
than the AM1-MM result8 for the QM donor, but AM1-MM
is better for the QM acceptor model. More important is the fact
that the QM-MM energies are much closer to those obtained
from a full QM calculation in both cases.

There are large differences in the structural results obtained
with the HF-MM and DF-MM studies relative to the AM1-
MM calculations.8 The AM1-MM method predicts a consider-
able deviation from linearity for the hydrogen bond angle, H‚
‚‚OH. The HF-MM and DF-MM calculations predict an
almost linear hydrogen bond. These results are in agreement
with high-level pure quantum mechanical studies of the water
dimer47 and the pure quantum results given in the table. The
experimental error for the hydrogen bond angle48,49is too large
to compare the theoretical and experimental results. The HF-
MM and DF-MM calculations consistently underestimate the
d(O‚‚‚O) distances by approximately 0.2 Å compared with the
pure quantum values.

Overall, the BLYP-MM method gives the best results for
the energy of the water dimer calculations. The BLYP-MM
results are better than those obtained with the HF-MM for this
basis set (i.e., they agree better with the corresponding pure
quantum result and with the experimental binding energy). The
nonlocal DF-MM results are generally better than the LDA-
MM results, though the LDA-MM calculations yield geom-
etries that are slightly closer to the full QM calculations
than the corresponding BLYP results. The performance of both
HF-MM and DF-MM is much better than the AM1-MM
method.8

Anion-Water Complexes.The complex between water and
the chloride ion was difficult to model for the AM1-MM
potential.8 Many quantum mechanics studies50,51of this system
have established that the minimum hasCs symmetry. Field et
al.8 found that treating the water as QM and the halide ion as
MM gave the correct symmetry for the complex but that the
opposite partitioning of the complex predicted a minimum with
C2V symmetry. The structure withC2V symmetry is predicted

by pure quantum mechanics calculations to be a transition state
for the interchange of hydrogen bonds. TheCs andC2V structures
are depicted in Figure 1. The results for the HF-MM and DF-
MM calculations for this complex are given in Table 2.

In contrast to the AM1-MM results both the HF-MM and
DF-MM methods find that the minimum for this complex has
Cs symmetry irrespective of the partitioning scheme. The
calculated binding energies whether by QM or QM-MM are
reasonably close to the gas-phase and to the experimental
values52 (except for AM1-MM with QM H2O). The pure MM
calculation gives a somewhat larger binding energy because of
the use of a polarized water molecule (see above). The pure
quantum results with LDA show an anomalously high binding
energy (a characteristic flaw of LDA53). Interestingly, this
binding energy is reduced in the LDA-MM calculation. The
binding energies are consistently higher when the water is treated
quantum mechanically, except for AM1-MM. The largest
discrepancies in the binding energy occur for AM1-MM with
QM water (3.4 kcal/mol) and for LDA-MM (2.1 kcal/mol) with
QM water. When the chloride is in the quantum region, the
largest discrepancy is only 1.1 kcal/mol, which occurs with the
HF-MM method. These are satisfactory results considering that
the pure quantum mechanical calculation with the same basis
set overestimates the binding energy by 0.85 kcal/mol. The
binding energies are better than those predicted8 by AM1-MM,
especially since the AM1-MM method did not predict the
correct geometry for the complex. In the absence of experimental
data, the geometries are compared with the results from pure
quantum mechanical calculations. The bond distances are in
very good agreement with pure quantum results. However, the
QM-MM angles show greater deviations from the pure
quantum mechanical results, with an underestimation of ap-
proximately 18° when the chloride is in the QM region. The
DF-MM and HF-MM methods perform equally well for this
complex.

Cation-Water Complexes.The important roles of metal
ions in biological systems is well documented. Cation-water
complexes involving Na+ and Mg2+ were chosen for the first
test; other systems are considered in section IV. In each case
an all-electron treatment of the quantum region was made; this
contrasts with the semiempirical QM-MM methods. In the latter
case, metal ions such as Na+ and Mg2+ are essentially treated
as point charges by AM1 and PM3 since these methods only

TABLE 2: Binding Energy, ∆E, and Structural Data for the Water-Chloride Ion Dimer a

∆E d(O‚‚‚Cl-) ∠OH‚‚‚Cl d(H‚‚‚Cl-) d(H′‚‚‚Cl-) ∆E d(O‚‚‚Cl-) ∠OH‚‚‚Cl d(H‚‚‚Cl-) d(H′‚‚‚Cl-)

Hybrid Potential Calculations

QM Water MM Water

HF-MM 15.29 3.130 163.5 2.187 3.245 14.16 3.238 134.6 2.478 2.936
LDA-MM 15.53 3.117 164.3 2.145 3.270 14.18 3.237 134.7 2.474 2.939
BLYP-MM 14.80 3.128 164.4 2.147 3.246 14.18 3.236 134.9 2.474 2.939
AM1-MM b 10.40 3.320 138.9 2.578 3.144 13.50 3.290 116.5 2.745 2.745

Full Quantum Calculations

HF 14.25 3.266 153.9 2.376 3.275
LDA 22.10 3.020 161.8 2.044 3.073
BLYP 15.98 3.161 157.8 2.203 3.230

Full Classical Calculation

CHARMM 17.26 3.21 129.8 2.501 2.823
experiment 13.4

a The energy is in kcal/mol; bond lenghts are in A° ngstroms, and bond angles are in degrees. For the hybrid potential calculations the TIP3P
model was used for water in the MM region and the 6-31G* basis set for all quantum calculations. Calculations were performed for the water in
the quantum region and repeated for water in the classical region. All degrees of freedom were optimized. No counterpoise correction was used in
the QM calculations.b For the AM1-MM calculations the symmetry of the complex changes with the partition of the system. When water is in the
quantum region, the complex hasC2V symmetry.
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consider valence electrons in the quantum calculation. In
addition, it is not possible to study the Mg2+/H2O) system with
AM1-MM methods since AM1 has not been parametrized for
Mg2+. Consequently, only HF and DFT based QM and QM-
MM results are given in Table 3.

The ions and the water molecule were alternatively treated
as quantum and classical systems in the QM-MM calculations.
The results for the sodium ion and water are close to those
obtained by the pure quantum calculations. The binding energies
are slightly overestimated by the HF-MM and DF-MM
methods for both partition schemes with respect to the experi-
mental value, but both methods reproduce the pure quantum
value quite well with the exception of LDA, which once again
has a higher binding energy relative to the other pure quantum
methods. The results for the geometries are very close to the
pure quantum mechanics calculation, with slightly better agree-
ment obtained for the case when water is treated by QM.

For the (Mg2+/H2O) complex, the quality of the calculated
binding energies for the HF-MM and DF-MM calculations
is not as good as for Na+. When the water is in the quantum
region, the binding energy is overestimated for the HF-MM
method and underestimated for the DF-MM methods, relative
to the QM results. When the magnesium ion is in the quantum
region, the binding energy is consistently underestimated for
the HF-MM method and the DF-MM methods. These are the
poorest results obtained for all the systems considered in this
study. A more realistic physical description of these systems
should take account of polarization, which is absent from the
current QM-MM method. Polarization effects can be included
in the calculation through the introduction of an extra term
in the effective Hamiltonian of eq 2.54,55 This extra term,

Hpol, is given by

The induced dipole moment of the classical atoms,µM
ind, is

directly coupled to the wave function of the quantum system,
and so the polarization needs to be calculated self-consistently.
It is feasible to perform this type of calculation for the small
systems studied here, but the computational cost would be
prohibitive for an enzyme, for example. Since the present test
calculations have as their objective the HF-MM amd DF-
MM treatment of reactions in proteins, which already is
computationally intensive, we do not investigate polarization
here. A possibility would be to consider a three-region system
based on ab initio QM, semiempirical QM for polarization, and
MM for the rest of the protein.

Any small ion, such as those considered in this study would
be expected to polarize the water molecule to some extent. A
strong polarization is expected to result from the interaction of
the doubly charged magnesium with water, and this may explain
the large discrepancy in the binding energy found for the Mg2+/
H2O complex when the magnesium ion is in the quantum region
and H2O is in the MM region. This illustrates that care is
required when partitioning a system that includes highly charged
species such as Mg2+. It is interesting in this regard that the
CHARMM energy value, which was parametrized using ab
initio data (Prodhom et al. unpublished) gives reasonable results.
Ideally, the atoms directly coordinated to the metal should also
be included in the quantum region. Unfortunately, this increases

TABLE 3: Binding Energy, ∆E, and Structural Data for the Na+ and Mg2+ Complexes with Watera

∆E d(O‚‚‚M) ∠OH‚‚‚M ∆E d(O‚‚‚M) ∠OH‚‚‚M

Hybrid Potential Calculations

QM Water MM Water

Na+

HF-MM 30.50 2.153 127.7 28.05 2.190 130.1
LDA-MM 29.70 2.156 127.7 28.08 2.190 130.1
BLYP-MM 28.24 2.163 128.1 28.07 2.190 130.1

Full Quantum Calculations

HF 28.57 2.215 127.2
LDA 34.41 2.118 127.1
BLYP 30.86 2.168 127.4

Full Classical Calculation

CHARMM 30.58 2.189 130.36
experiment 24.0

Hybrid Potential Calculations

QM Water MM Water

Mg2+

HF-MM 85.40 2.037 127.6 79.46 1.962 132.8
LDA-MM 84.40 1.908 127.6 79.48 1.961 132.8
BLYP-MM 81.12 1.911 127.7 79.48 1.961 132.8

Full Quantum Calculations

HF 80.21 1.934 127.2
LDA 96.71 1.923 126.8
BLYP 91.75 1.954 126.9

Full Classical Calculation

CHARMM 85.00 1.961 133.2

a The units of energy are kcal mol-1 and the structural units are A° ngstroms for bond lengths and degress for bond angles. For the hybrid potential
calculations the TIP3P model was used for water in the MM region and the 6-31G* basis set was used for the quantum region. Calculations were
performed for the water in the quantum region, and repeated for water in the classical region. All degrees of freedom were minimized. No counterpoise
correction was used in the QM calculations.

Hpol -
1

2
∑
M

∑
R

µM
ind

rRM
3

rRM +
1

2
∑
M

∑
R

ZMµM
ind

RRM
3

RMR (11)
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the size of the quantum region. An alternative would be to
reparametrize the MM atoms that coordinate to the metal or to
introduce a local polarization term.56 In other applications of
the AM1-MM potential it was found that an optimization of
the empirical van der Waals parameters of the QM and MM
atoms is necessary to produce satisfactory results.57

IV. Link Atom Tests: Divalent Cations with Biological
Ligand Analogues

In some systems it is desirable to partition different parts of
the same molecule into quantum and classical regions. One case
where this is essential is for an enzyme-substrate complex,
where active site residues of the enzyme participate in the
reaction. Since there is no exact procedure for introducing such
a partitioning, a variety of approximate methods8,14,58,59have
been used to deal with the truncation of the electron density
that arises when the system is partitioned across a covalent bond.
We employ the “link atom” approach, in which a hydrogen atom
is used to complete the valency of the atom where the truncation
occurs and is placed along the bond between the quantum and
classical regions. This is analogous to an approach used to
truncate the systems in pure QM calculations.60,61The link atom
is part of the full quantum calculation, but it does not have a
van der Waals interaction with the atoms in the MM region.
The “link atom” method was used in the AM1-MM method
of Field et al.,8 and the HF-MM method of Singh and
Kollman.6 The approach used here is a modification of that
presented by Field et al.,8 as described in the “Computational
Details” section.

For the AM1-MM method it is known from the work of
Field et al.8 that care must be taken when deciding where to
partition a molecule into quantum and classical regions. In
general, different partitioning should be investigated to verify
that consistent results are obtained. Field et al.8 advised against
partitioning the system acrossπ -bonds, or other bonds that are
involved in conjugation. Also, if large charge shifts occur, the
partitioning may have to be displaced.

In this section the results from simulations employing the
QM-MM method with link atoms are presented. We investigate
the interactions of divalent metal ions with model biological
ligands. Examples where this is important is for metal-containing
enzymes such as xylose isomerase62 and for ribozymes.63 The
interactions of Mg2+ and Ca2+ with model ligands containing
functional groups commonly found in biomolecules are reported.
Acetate and propanoate were chosen as models for glutamate
and aspartate; acetamide and propanamide were chosen as
models for glutamine and asparagine; ethylimidazole was chosen
to model histidine; and dimethyl phosphate (DMP) was chosen
as a generic model for phosphate. Since these test systems are
very polar, they provide an appropriate test for the link atom
approximation. Moreover, the division between QM and MM
atoms is made next to a polar atom, which maximizes the effect
of neglect of polarization in the MM region. In each case the
results were compared with pure quantum calculations. The
results are presented in Tables 4-8. The partitioning schemes
are shown in Figure 2.

Carboxylates.Glutamate and aspartate are common ligands
for metal ions in proteins. The interactions of these amino acids
with Mg2+ and Ca2+ have been modeled by acetate and
propanoate ligands. The minima of these complexes haveC2V
symmetry with the carboxylates acting as bidentate ligands.
Although there are examples of glutamate and aspartate acting
as unidentate ligands to metals in proteins, only the bidentate
complexes were studied here. The interactions in these com-

plexes are very strong due to the attractive nature of the charged
species, and the distances between the metals and carboxylates
are very short. The HF-MM/DF-MM calculations accurately
reproduce the energetics and structural features of the pure
quantum calculations, and the Mulliken charges agree well
(Figure 3 (I and II)).

TABLE 4: Binding Energies, ∆E in kcal mol-1 for Mg 2+

and Ca2+ Complexes with Selected Ligandsa

acetate propanoate

Mg2+ Ca2+ Mg2+ Ca2+

HF-MM -387.29 -306.13 -383.04 -307.63
LDA-MM -405.52 -314.23 -405.11 -313.68
BLYP-MM -403.21 -310.44 -402.86 -310.02
HF -387.15 -309.07 -384.17 -308.11
LDA -407.98 -322.13 -406.17 -318.69
BLYP -404.10 -318.52 -403.00 -315.79
MM -333.44 -259.29 -337.58 -261.31

acetamide propanamide

Mg2+ Ca2+ Mg2+ Ca2+

HF-MM -134.26 -90.30 -134.49 -94.03
LDA-MM -141.77 -89.63 -146.50 -90.88
BLYP-MM -139.74 -89.66 -131.36 -89.47
HF -136.95 -91.20 -138.05 -94.09
LDA -147.36 -92.24 -151.98 -94.08
BLYP -144.33 -89.95 -148.89 -92.80
MM -87.21 -62.92 -87.30 -63.03

ethylimidazole DMP

Mg2+ Ca2+ Mg2+ Ca2+

HF-MM -138.33 -89.39 -387.32 -299.11
LDA-MM -152.27 -88.61 -399.88 -299.61
BLYP-MM -150.08 -88.41 -392.16 -298.75
HF -140.31 -89.13 -379.11 -298.36
LDA -156.68 -89.14 -401.79 -300.20
BLYP -155.25 -90.43 -396.24 -302.77
MM -102.41 -69.04 -307.18 -220.43

a A 6-31G* basis set was used for the quantum region with the
exception of Ca, which had a TZV2P basis set of the Dunning type68

[8s4p2d]rm.69 No counterpoise correction was used in the QM calcula-
tions.

TABLE 5: Structural Data for the Complexes of Acetate
and Propanoate with the Mg2+ and Ca2+ Ionsa

acetate propanoate

d(M-O) ∠MOC d(C-O) d(M-O) ∠MOC d(C-O)

Mg2+

HF-MM 1.922 86.57 1.251 1.935 86.57 1.255
LDA-MM 1.987 85.10 1.270 1.971 84.92 1.275
BLYP-MM 1.936 87.07 1.258 1.908 87.24 1.249
HF 1.919 87.54 1.267 1.903 87.69 1.265
LDA 1.945 85.71 1.290 1.926 85.56 1.287
BLYP 1.977 85.87 1.306 1.968 86.40 1.309
MM 1.831 89.59 1.266 1.827 91.53 1.280

Ca2+

HF-MM 2.304 91.38 1.246 2.302 91.34 1.248
LDA-MM 2.275 88.43 1.266 2.270 89.97 1.284
BLYP-MM 2.321 88.91 1.282 2.284 90.18 1.299
HF 2.212 89.31 1.251 2.287 92.40 1.260
LDA 2.228 89.77 1.285 2.226 89.66 1.286
BLYP 2.287 90.00 1.300 2.280 90.05 1.300
MM 2.303 94.43 1.265 2.297 95.73 1.265

a A 6-31G* basis set was used for the quantum region with the
exception of Ca, which had a TZV2P basis set of the Dunning type68

[8s4p2d].69 Bond distances are in A° ngstroms, and angles are in degrees.
Refer to Figure 2 for a depiction of the structure. No counterpoise
method was used in the QM calculations.
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Amides. Both the acetamide and propanamide metal com-
plexes serve as models for possible carbonyl-metal ion
interactions found in the active sites of metalloenzymes involved
in peptide hydrolysis.64 The QM-MM results are in excellent
agreement with pure quantum results. For both Mg2+ and Ca2+

the metal has a strong interaction with the carbonyl oxygen.
The metal ion lies off the carbonyl vector, away from the
nitrogen, consistent with the pure QM calculations. The binding
energies of the amide complexes are larger than the correspond-
ing complexes with water. This can be attributed to the greater
polarizability of the carbonyl group. Figure 3 (III and IV) shows
the Mulliken charges for these complexes. The agreement with
pure quantum calculations is excellent, especially for those
atoms further from the boundary between the quantum and
classical regions.

TABLE 6: Structural Data for the Complexes of Acetamide and Propanamide with the Mg2+ and Ca2+ Ionsa

acetamide propanamide

d(M-O) ∠MOC d(C-O) d(C-N) d(M-O) ∠MOC d(C-O) d(C-N)

Mg2+

HF-MM 1.794 169.60 1.268 1.280 1.802 169.77 1.273 1.283
LDA-MM 1.806 169.84 1.263 1.277 1.793 168.66 1.287 1.299
BLYP-MM 1.803 173.55 1.265 1.280 1.822 162.30 1.303 1.311
HF 1.781 171.00 1.278 1.288 1.781 171.30 1.284 1.286
LDA 1.788 161.60 1.301 1.305 1.785 161.48 1.302 1.302
BLYP 1.812 160.76 1.321 1.319 1.796 162.48 1.308 1.305
MM 1.869 175.4 1.252 1.347 1.869 174.7 1.253 1.348

Ca2+

HF-MM 2.207 171.00 1.248 1.237 2.199 170.70 1.252 1.297
LDA-MM 2.132 171.95 1.270 1.309 2.130 166.58 1.272 1.308
BLYP-MM 2.193 170.99 1.251 1.238 2.170 166.75 1.287 1.322
HF 2.159 173.44 1.260 1.299 2.187 173.70 1.258 1.302
LDA 2.120 171.09 1.279 1.311 2.115 172.19 1.280 1.308
BLYP 2.173 171.52 1.293 1.324 2.149 172.70 1.300 1.328
MM 2.368 173.9 1.247 1.348 2.367 173.9 1.247 1.349
a A 6-31G* basis set was used for the quantum region with the exception of Ca which had a TZV2P basis set of the Dunning type68 [8s4p2d].69

Bond distances are in Å and angles are in degrees. Refer to Figure 2 for a depiction of the structure. No counterpoise correction was used in the
QM calculations.

TABLE 7: Structural Data for the Complexes between
Ethylimidazole and the Mg2+ and Ca2+ Ionsa

d(M-N) ∠MNC′ b ∠MNC′′ b

Mg2+

HF-MM 1.958 123.2 131.10
LDA-MM 1.958 122.6 128.70
BLYP-MM 1.987 124.1 128.90
HF 1.937 122.90 131.60
LDA 1.948 124.57 127.99
BLYP 1.979 107.00 127.80
MM 1.963 125.1 131.8

Ca2+

HF-MM 2.403 122.60 132.00
LDA-MM 2.311 121.09 133.01
BLYP-MM 2.362 121.37 132.93
HF 2.376 117.80 137.10
LDA 2.304 120.09 133.73
BLYP 2.358 122.58 131.88
MM 2.492 124.6 131.9
a A 6-31G* basis set was used for the quantum region with the

exception of Ca which had a TZV2P basis set of the Dunning type68

[8s4p2d].69 Bond distances are in A° ngstroms, and angles are in degrees.
b MNC′ refers to the angle made by the metal, nitrogen, and the carbon
that is not bonded to the NH group. MNC′′ refers to the angle with the
carbon bonded to the NH group. Refer to Figure 2. No counterpoise
correction was used in the QM calculations.

TABLE 8: Structural Data for the Complexes between
DMP and the Mg2+ and Ca2+ Ionsa

d(M-O) ∠MOP d(P-O)

Mg2+

HF-MM 1.903 91.20 1.534
LDA-MM 1.919 88.63 1.540
BLYP-MM 1.951 88.79 1.591
HF 1.904 90.63 1.537
LDA 1.909 88.34 1.597
BLYP 1.935 88.47 1.597
MM 1.838 97.29 1.489

Ca2+

HF-MM 2.300 96.10 1.528
LDA-MM 2.251 92.11 1.547
BLYP-MM 2.265 96.41 1.550
HF 2.285 95.88 1.522
LDA 2.217 92.03 1.544
BLYP 2.266 92.25 1.568
MM 2.335 100.80 1.486

a A 6-31G* basis set was used for the quantum region with the
exception of Ca which had a TZV2P basis set of the Dunning type68

[8s4p2d].69 Bond distances are in Å and angles are in degrees. Refer
to Figure 1 for a depiction of the structure. No counterpoise correction
was used in the QM calculations.

Figure 2. Partition schemes for the complexes of the cations M2+ with
selected ligands. Ghosted atoms are in the classical region.
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Figure 3. Mulliken charges for the model complexes with magnesium and calcium. For each atom the QM and QM-MM charges are shown in pairs for the HF, LDA, and BLYP Hamiltonians. (I)-(II)
are the carboxylate complexes; (III) and (IV) are the amide complexes; (V) and (VI) are the imidazole complexes; (VII) and (VII) are the dimethyl phosphate complexes. Groups that were in the classical
region in QM-MM calculations are ghosted.
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Ethylimidazole. Histidine is another common ligand for
metals in proteins. This amino acid was modeled by ethylimi-
dazole. Since it is unwise to partition a molecule across a
π-system,8 the imidazole group is in the quantum region and
the ethyl group in the classical region. The metal ions are
positioned along the nitrogen lone pair vector and the binding
energies for both ions are similar to those found for the
complexes with amides. This QM-MM complex gives excellent
agreement with pure quantum calculations. This is not unex-
pected since the boundary between the quantum and classical
regions is far from the metal binding site. Again the Mulliken
charges agree well (Figure 3 (V)).

DMP. Mg2+ and Ca2+ ions are known to form complexes
with DNA and RNA and are known to have important roles in
RNA folding and tertiary structure.65 In recent years it has been
found that dications act as cofactors for RNA cleavage reactions
in ribozymes.63 Dications have several possible binding sites
on nucleotides, but we have chosen only to consider the one
between these ions and the phosphate group. These complexes
illustrate an advantage of the HF-MM/DF-MM potentials over
MNDO-based QM-MM potentials since there are well-
documented problems associated with using AM1 to study
phosphorus-based compounds.29 Like the carboxylates the
interactions between the metals and DMP is very strong with a
short metal-phosphate distance. The minima haveC2V sym-
metry. The HF-MM/DF-MM structural, energetic, and charge
distribution results (Figure 3 (VI)) are very similar to the pure
quantum results.

V. Timings

An important aspect of QM-MM calculations with different
QM methods concerns the savings in computer time relative to
full QM calculations. The execution time (cpu) for a single point
calculation of the complex of ethylimidazole to magnesium is
reduced from 19.12 to 7.52 s at the HF-MM level. For the
complex of propanamide to calcium the execution time is
reduced from 27.81 to 11.24 s at the LDA-MM level. In both
cases the execution time is reduced by 50% with even a small
part of the complex in the MM region (see Figure 2). For larger
MM regions, the saving in time versus a full QM calculation
could obviously be much more important.

VI. Conclusions

The study of simple binary complexes demonstrates that large
improvements in the results for the QM-MM calculations are
obtained by using Hartree-Fock or density functional methods
for the quantum region instead of the semiempirical AM1
Hamiltonian. The largest improvement is found for the binding
energies, but there is also an increase in the accuracy of the
calculated geometries. The results are such that the method can
be applied with some confidence to study reactions in biomol-
ecules. However, in each case specific comparisons between
QM and QM-MM calculations should be made to verify the
approach for the system of interest.

The results with the link atoms are particularly encouraging.
In some cases the partitioning scheme (e.g., for the complexes
involving ethylimidazole and DMP) results in an essentially QM
calculation with a perturbation from a distant alkyl group.
However, these are exactly the types of partitioning that will
be employed in simulations of the condensed phase chemistry
of proteins and nucleic acids. The link atom is not the only
approach available, but in the present cases it performs well.
Other approaches have been used, most notably the frozen
orbital method of Rivail and co-workers.58

Several methods have been reported in the literature for
realizing linear scaling quantum calculations (HF and DF based).
It is now possible to do approximate QM calculations for very
large systems by the use of linear scaling methods.66,67However,
the time required is such that semiempirical Hamiltonians are
currently the only realistic methods available. Moreover, in most
cases (other than electron transfer, for example) a full QM
treatment is not necessary. Given the timing advantage from
using QM-MM methods, as compared with pure QM calcula-
tions, and the level of accuracy that can be achieved based on
the test cases presented here, we conclude that both HF-MM
and DF-MM methods are a useful option for the accurate study
of condensed phase chemistry, in general, and biomolecules in
particular.
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